Name:Kubernetes Process with Anomalous Resource Utilisation id:25ca9594-7a0d-4a95-a5e5-3228d7398ec8 version:4 date:2024-10-17 author:Matthew Moore, Splunk status:experimental type:Anomaly Description:The following analytic identifies high resource utilization anomalies in Kubernetes processes. It leverages process metrics from an OTEL collector and hostmetrics receiver, fetched via the Splunk Infrastructure Monitoring Add-on. The detection uses a lookup table with average and standard deviation values to spot anomalies. This activity is significant as high resource utilization can indicate security threats like cryptojacking, unauthorized data exfiltration, or compromised containers. If confirmed malicious, such anomalies can disrupt services, exhaust resources, increase costs, and allow attackers to evade detection or maintain access. Data_source:
how_to_implement:To implement this detection, follow these steps:
* Deploy the OpenTelemetry Collector (OTEL) to your Kubernetes cluster.
* Enable the hostmetrics/process receiver in the OTEL configuration.
* Ensure that the process metrics, specifically Process.cpu.utilization and process.memory.utilization, are enabled.
* Install the Splunk Infrastructure Monitoring (SIM) add-on. (ref: https://splunkbase.splunk.com/app/5247)
* Configure the SIM add-on with your Observability Cloud Organization ID and Access Token.
* Set up the SIM modular input to ingest Process Metrics. Name this input "sim_process_metrics_to_metrics_index".
* In the SIM configuration, set the Organization ID to your Observability Cloud Organization ID.
* Set the Signal Flow Program to the following: data('process.threads').publish(label='A'); data('process.cpu.utilization').publish(label='B'); data('process.cpu.time').publish(label='C'); data('process.disk.io').publish(label='D'); data('process.memory.usage').publish(label='E'); data('process.memory.virtual').publish(label='F'); data('process.memory.utilization').publish(label='G'); data('process.cpu.utilization').publish(label='H'); data('process.disk.operations').publish(label='I'); data('process.handles').publish(label='J'); data('process.threads').publish(label='K')
* Set the Metric Resolution to 10000.
* Leave all other settings at their default values.
* Run the Search Baseline Of Kubernetes Container Network IO Ratio known_false_positives:unknown References: -https://github.com/signalfx/splunk-otel-collector-chart drilldown_searches:
: tags: analytic_story: - 'Abnormal Kubernetes Behavior using Splunk Infrastructure Monitoring' asset_type:Kubernetes confidence:50 impact:50 message:Kubernetes Process with Anomalous Resource Utilisation on host $host$ mitre_attack_id: - 'T1204' observable: name:'host' type:'Hostname' - role: - 'Victim' product: - 'Splunk Enterprise' - 'Splunk Enterprise Security' - 'Splunk Cloud' required_fields: - 'process.*' - 'host.name' - 'k8s.cluster.name' - 'k8s.node.name' - 'process.executable.name' risk_score:25 security_domain:network