Detect Long DNS TXT Record Response: networkEndpointrisk_score:252024-10-17version:4
This search is used to detect attempts to use DNS tunneling, by calculating the length of responses to DNS TXT queries. Endpoints using DNS as a method of transmission for data exfiltration, Command And Control, or evasion of security controls can often be detected by noting unusually large volumes of DNS traffic. Deprecated because this detection should focus on DNS queries instead of DNS responses.
Excessive Usage of NSLOOKUP App: endpointEndpointrisk_score:282024-09-30version:4
The following analytic detects excessive usage of the nslookup application, which may indicate potential DNS exfiltration attempts. It leverages Sysmon EventCode 1 to monitor process executions, specifically focusing on nslookup.exe. The detection identifies outliers by comparing the frequency of nslookup executions against a calculated threshold. This activity is significant as it can reveal attempts by malware or APT groups to exfiltrate data via DNS queries. If confirmed malicious, this behavior could allow attackers to stealthily transfer sensitive information out of the network, bypassing traditional data exfiltration defenses.
Excessive DNS Failures: networkEndpointrisk_score:252024-10-17version:5
The following analytic identifies excessive DNS query failures by counting DNS responses that do not indicate success, triggering when there are more than 50 occurrences. It leverages the Network_Resolution data model, focusing on DNS reply codes that signify errors. This activity is significant because a high number of DNS failures can indicate potential network misconfigurations, DNS poisoning attempts, or malware communication issues. If confirmed malicious, this activity could lead to disrupted network services, hindered communication, or data exfiltration attempts by attackers.
Detection of DNS Tunnels: networkEndpointrisk_score:252024-10-17version:4
This search is used to detect DNS tunneling, by calculating the sum of the length of DNS queries and DNS answers. The search also filters out potential false positives by filtering out queries made to internal systems and the queries originating from internal DNS, Web, and Email servers. Endpoints using DNS as a method of transmission for data exfiltration, Command And Control, or evasion of security controls can often be detected by noting an unusually large volume of DNS traffic.
NOTE:Deprecated because existing detection is doing the same. This detection is replaced with two other variations, if you are using MLTK then you can use this search `ESCU - DNS Query Length Outliers - MLTK - Rule` or use the standard deviation version `ESCU - DNS Query Length With High Standard Deviation - Rule`, as an alternantive.
DNS Query Length With High Standard Deviation: networkEndpointrisk_score:562024-09-30version:7
The following analytic identifies DNS queries with unusually large lengths by computing the standard deviation of query lengths and filtering those exceeding twice the standard deviation. It leverages DNS query data from the Network_Resolution data model, focusing on the length of the domain names being resolved. This activity is significant as unusually long DNS queries can indicate data exfiltration or command-and-control communication attempts. If confirmed malicious, this activity could allow attackers to stealthily transfer data or maintain persistent communication channels within the network.
DNS Query Requests Resolved by Unauthorized DNS Servers: networkEndpointrisk_score:252024-10-17version:5
This search will detect DNS requests resolved by unauthorized DNS servers. Legitimate DNS servers should be identified in the Enterprise Security Assets and Identity Framework.
DNS Exfiltration Using Nslookup App: endpointEndpointrisk_score:722024-11-28version:6
The following analytic identifies potential DNS exfiltration using the nslookup application. It detects specific command-line parameters such as query type (TXT, A, AAAA) and retry options, which are commonly used by attackers to exfiltrate data. The detection leverages Endpoint Detection and Response (EDR) telemetry, focusing on process execution logs. This activity is significant as it may indicate an attempt to communicate with a Command and Control (C2) server or exfiltrate sensitive data. If confirmed malicious, this could lead to data breaches and unauthorized access to critical information.
Detect Remote Access Software Usage Registry: endpointEndpointrisk_score:252024-11-21version:1
The following analytic detects when a known remote access software is added to common persistence locations on a device within the environment. Adversaries use these utilities to retain remote access capabilities to the environment. Utilities in the lookup include AnyDesk, GoToMyPC, LogMeIn, TeamViewer and much more. Review the lookup for the entire list and add any others.
Detect Remote Access Software Usage File: endpointEndpointrisk_score:252024-09-30version:4
The following analytic detects the writing of files from known remote access software to disk within the environment. It leverages data from Endpoint Detection and Response (EDR) agents, focusing on file path, file name, and user information. This activity is significant as adversaries often use remote access tools like AnyDesk, GoToMyPC, LogMeIn, and TeamViewer to maintain unauthorized access. If confirmed malicious, this could allow attackers to persist in the environment, potentially leading to data exfiltration, further compromise, or complete control over affected systems.
Multiple Archive Files Http Post Traffic: networkEndpointrisk_score:252024-09-30version:4
The following analytic detects the high-frequency exfiltration of archive files via HTTP POST requests. It leverages HTTP stream logs to identify specific archive file headers within the request body. This activity is significant as it often indicates data exfiltration by APTs or trojan spyware after data collection. If confirmed malicious, this behavior could lead to the unauthorized transfer of sensitive data to an attacker’s command and control server, potentially resulting in severe data breaches and loss of confidential information.
Protocol or Port Mismatch: networkEndpointrisk_score:252024-10-17version:4
The following analytic identifies network traffic where the higher layer protocol does not match the expected port, such as non-HTTP traffic on TCP port 80. It leverages data from network traffic inspection technologies like Bro or Palo Alto Networks firewalls. This activity is significant because it may indicate attempts to bypass firewall restrictions or conceal malicious communications. If confirmed malicious, this behavior could allow attackers to evade detection, maintain persistence, or exfiltrate data through commonly allowed ports, posing a significant threat to network security.
Clients Connecting to Multiple DNS Servers: networkEndpointrisk_score:252024-10-17version:5
This search allows you to identify the endpoints that have connected to more than five DNS servers and made DNS Queries over the time frame of the search.
DNS Query Length Outliers - MLTK: networkEndpointrisk_score:252024-10-17version:4
The following analytic identifies DNS requests with unusually large query lengths for the record type being requested. It leverages the Network_Resolution data model and applies a machine learning model to detect outliers in DNS query lengths. This activity is significant because unusually large DNS queries can indicate data exfiltration or command-and-control communication attempts. If confirmed malicious, this activity could allow attackers to exfiltrate sensitive data or maintain persistent communication channels with compromised systems.
Detect Remote Access Software Usage Traffic: networkNetworkrisk_score:252024-09-30version:4
The following analytic detects network traffic associated with known remote access software applications, such as AnyDesk, GoToMyPC, LogMeIn, and TeamViewer. It leverages Palo Alto traffic logs mapped to the Network_Traffic data model in Splunk. This activity is significant because adversaries often use remote access tools to maintain unauthorized access to compromised environments. If confirmed malicious, this activity could allow attackers to control systems remotely, exfiltrate data, or deploy additional malware, posing a severe threat to the organization's security.
Windows Remote Access Software Hunt: endpointEndpointrisk_score:12024-10-17version:4
The following analytic identifies the use of remote access software within the environment. It leverages data from Endpoint Detection and Response (EDR) agents, focusing on process execution logs. This detection is significant as unauthorized remote access tools can be used by adversaries to maintain persistent access to compromised systems. If confirmed malicious, this activity could allow attackers to remotely control systems, exfiltrate data, or further infiltrate the network. Review the identified software to ensure it is authorized and take action against any unauthorized utilities.
Detect Remote Access Software Usage URL: networkNetworkrisk_score:252024-09-30version:4
The following analytic detects the execution of known remote access software within the environment. It leverages network logs mapped to the Web data model, identifying specific URLs and user agents associated with remote access tools like AnyDesk, GoToMyPC, LogMeIn, and TeamViewer. This activity is significant as adversaries often use these utilities to maintain unauthorized remote access. If confirmed malicious, this could allow attackers to control systems remotely, exfiltrate data, or further compromise the network, posing a severe security risk.
Detect DGA domains using pretrained model in DSDL: networkEndpointrisk_score:632024-10-17version:3
The following analytic identifies Domain Generation Algorithm (DGA) generated domains using a pre-trained deep learning model. It leverages the Network Resolution data model to analyze domain names and detect unusual character sequences indicative of DGA activity. This behavior is significant as adversaries often use DGAs to generate numerous domain names for command-and-control servers, making it harder to block malicious traffic. If confirmed malicious, this activity could enable attackers to maintain persistent communication with compromised systems, evade detection, and execute further malicious actions.
Detect DNS Data Exfiltration using pretrained model in DSDL: networkEndpointrisk_score:452024-10-17version:3
The following analytic identifies potential DNS data exfiltration using a pre-trained deep learning model. It leverages DNS request data from the Network Resolution datamodel and computes features from past events between the same source and domain. The model generates a probability score (pred_is_exfiltration_proba) indicating the likelihood of data exfiltration. This activity is significant as DNS tunneling can be used by attackers to covertly exfiltrate sensitive data. If confirmed malicious, this could lead to unauthorized data access and potential data breaches, compromising the organization's security posture.
Detect suspicious DNS TXT records using pretrained model in DSDL: networkEndpointrisk_score:452024-10-17version:3
The following analytic identifies suspicious DNS TXT records using a pre-trained deep learning model. It leverages DNS response data from the Network Resolution data model, categorizing TXT records into known types via regular expressions. Records that do not match known patterns are flagged as suspicious. This activity is significant as DNS TXT records can be used for data exfiltration or command-and-control communication. If confirmed malicious, attackers could use these records to covertly transfer data or receive instructions, posing a severe threat to network security.
Detect Remote Access Software Usage DNS: endpointEndpointrisk_score:42024-09-30version:4
The following analytic detects DNS queries to domains associated with known remote access software such as AnyDesk, GoToMyPC, LogMeIn, and TeamViewer. This detection is crucial as adversaries often use these tools to maintain access and control over compromised environments. Identifying such behavior is vital for a Security Operations Center (SOC) because unauthorized remote access can lead to data breaches, ransomware attacks, and other severe impacts if these threats are not mitigated promptly.
Detect hosts connecting to dynamic domain providers: networkEndpointrisk_score:562024-09-30version:5
The following analytic identifies DNS queries from internal hosts to dynamic domain providers. It leverages DNS query logs from the `Network_Resolution` data model and cross-references them with a lookup file containing known dynamic DNS providers. This activity is significant because attackers often use dynamic DNS services to host malicious payloads or command-and-control servers, making it crucial for security teams to monitor. If confirmed malicious, this activity could allow attackers to bypass firewall blocks, evade detection, and maintain persistent access to the network.
Detect Remote Access Software Usage FileInfo: endpointEndpointrisk_score:252024-09-30version:4
The following analytic detects the execution of processes with file or code signing attributes from known remote access software within the environment. It leverages Sysmon EventCode 1 data and cross-references a lookup table of remote access utilities such as AnyDesk, GoToMyPC, LogMeIn, and TeamViewer. This activity is significant as adversaries often use these tools to maintain unauthorized remote access. If confirmed malicious, this could allow attackers to persist in the environment, potentially leading to data exfiltration or further compromise of the network.
Prohibited Network Traffic Allowed: networkEndpointrisk_score:252024-09-30version:4
The following analytic detects instances where network traffic, identified by port and transport layer protocol as prohibited in the "lookup_interesting_ports" table, is allowed. It uses the Network_Traffic data model to cross-reference traffic data against predefined security policies. This activity is significant for a SOC as it highlights potential misconfigurations or policy violations that could lead to unauthorized access or data exfiltration. If confirmed malicious, this could allow attackers to bypass network defenses, leading to potential data breaches and compromising the organization's security posture.
Detect Spike in blocked Outbound Traffic from your AWS: networkAWS Instancerisk_score:252024-10-17version:3
The following analytic identifies spikes in blocked outbound network connections originating from within your AWS environment. It leverages VPC Flow Logs data from CloudWatch, focusing on blocked actions from internal IP ranges to external destinations. This detection is significant as it can indicate potential exfiltration attempts or misconfigurations leading to data leakage. If confirmed malicious, such activity could allow attackers to bypass network defenses, leading to unauthorized data transfer or communication with malicious external entities.
Plain HTTP POST Exfiltrated Data: networkEndpointrisk_score:632024-09-30version:4
The following analytic detects potential data exfiltration using plain HTTP POST requests. It leverages network traffic logs, specifically monitoring the `stream_http` data source for POST methods containing suspicious form data such as "wermgr.exe" or "svchost.exe". This activity is significant because it is commonly associated with malware like Trickbot, trojans, keyloggers, or APT adversaries, which use plain text HTTP POST requests to communicate with remote C2 servers. If confirmed malicious, this activity could lead to unauthorized data exfiltration, compromising sensitive information and potentially leading to further network infiltration.
Detect Large Outbound ICMP Packets: networkEndpointrisk_score:252024-11-06version:6
The following analytic identifies outbound ICMP packets with a size larger than 1,000 bytes. It leverages the Network_Traffic data model to detect unusually large ICMP packets that are not blocked and are destined for external IP addresses. This activity is significant because threat actors often use ICMP for command and control communication, and large ICMP packets can indicate data exfiltration or other malicious activities. If confirmed malicious, this could allow attackers to maintain covert communication channels, exfiltrate sensitive data, or further compromise the network.
TOR Traffic: networkEndpointrisk_score:802024-09-30version:5
The following analytic identifies allowed network traffic to The Onion Router (TOR), an anonymity network often exploited for malicious activities. It leverages data from Next Generation Firewalls, using the Network_Traffic data model to detect traffic where the application is TOR and the action is allowed. This activity is significant as TOR can be used to bypass conventional monitoring, facilitating hacking, data breaches, and illicit content dissemination. If confirmed malicious, this could lead to unauthorized access, data exfiltration, and severe compliance violations, compromising the integrity and security of the network.
Detect Remote Access Software Usage Process: endpointEndpointrisk_score:252024-09-30version:4
The following analytic detects the execution of known remote access software within the environment. It leverages data from Endpoint Detection and Response (EDR) agents, focusing on process names and parent processes mapped to the Endpoint data model. This activity is significant as adversaries often use remote access tools like AnyDesk, GoToMyPC, LogMeIn, and TeamViewer to maintain unauthorized access. If confirmed malicious, this could allow attackers to control systems remotely, exfiltrate data, or deploy additional malware, posing a severe threat to the organization's security.